Hydrogen bonds and heat diffusion in α-helices: a computational study.

نویسندگان

  • German Miño
  • Raul Barriga
  • Gonzalo Gutierrez
چکیده

Recent evidence has shown a correlation between the heat diffusion pathways and the known allosteric communication pathways in proteins. Allosteric communication in proteins is a central, yet unsolved, problem in biochemistry, and the study and characterization of the structural determinants that mediate energy transfer among different parts of proteins is of major importance. In this work, we characterized the role of hydrogen bonds in diffusivity of thermal energy for two sets of α-helices with different abilities to form hydrogen bonds. These hydrogen bonds can be a constitutive part of the α-helices or can arise from the lateral chains. In our in vacuo simulations, it was observed that α-helices with a higher possibility of forming hydrogen bonds also had higher rates of thermalization. Our simulations also revealed that heat readily flowed through atoms involved in hydrogen bonds. As a general conclusion, according to our simulations, hydrogen bonds fulfilled an important role in heat diffusion in structural patters of proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen bonds and asymmetrical heat diffusion in a-Helices. A Computational Analysis

In this work, we report the heat rectifying capability of α-helices. Using molecular dynamics simulations we show an increased thermal diffusivity in the C-Terminal to N-Terminal direction of propagation. The origin of this effect seems to be a function of the particular orientation of the hydrogen bonds stabilizing these α-helices. Our results may be relevant for the design of thermal rectific...

متن کامل

Allosteric communication pathways and thermal rectification in PDZ-2 protein: a computational study.

Allosteric communication in proteins is a fundamental and yet unresolved problem of structural biochemistry. Previous findings, from computational biology ( Ota, N.; Agard, D. A. J. Mol. Biol. 2005 , 351 , 345 - 354 ), have proposed that heat diffuses in a protein through cognate protein allosteric pathways. This work studied heat diffusion in the well-known PDZ-2 protein, and confirmed that th...

متن کامل

Helix stability of oligoglycine, oligoalanine, and oligo-β-alanine dodecamers reflected by hydrogen-bond persistence.

Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α- and β-amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β-amino acids are experimentally more stable than those formed by α-amino acids. This is paradoxical becaus...

متن کامل

Secondary Structure Effects on the Acidity of Histidine and Lysine-Based Peptides Model; A Theoretical Study

     In this study, the effect of the secondary structure of the protein on the acid strength of three structures of random (R), alpha helix (α) and beta sheet (b) were investigated theoretically. These structures are related to the cationic amino acids of histidine and lysine in the polypeptide chain of eight-glycine residue. Computational methods at the HF, B3LYP, X3LYP and M05-2X levels in t...

متن کامل

High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 118 34  شماره 

صفحات  -

تاریخ انتشار 2014